Electronic Design Automation

Assembly Line

AutoDMP Finds Efficient Ways To Place Transistors On Silicon Chips

📅 Date:

🔖 Topics: Electronic Design Automation

🏭 Vertical: Semiconductor

🏢 Organizations: NVIDIA


Macro placement is a critical very large-scale integration (VLSI) physical design problem that significantly impacts the design powerperformance-area (PPA) metrics. This paper proposes AutoDMP, a methodology that leverages DREAMPlace, a GPU-accelerated placer, to place macros and standard cells concurrently in conjunction with automated parameter tuning using a multi-objective hyperparameter optimization technique. As a result, we can generate high-quality predictable solutions, improving the macro placement quality of academic benchmarks compared to baseline results generated from academic and commercial tools. AutoDMP is also computationally efficient, optimizing a design with 2.7 million cells and 320 macros in 3 hours on a single NVIDIA DGX Station A100. This work demonstrates the promise and potential of combining GPU-accelerated algorithms and ML techniques for VLSI design automation

Read more at NVIDIA Research

Designing in the Age of AI

Synopsys helps semiconductor designers accelerate chip design and development on Google Cloud

📅 Date:

🔖 Topics: Electronic Design Automation

🏢 Organizations: Synopsys, Google


EDA software is a large consumer of high performance computing capacity in the cloud. With the release of Synopsys Cloud bring-your-own-cloud (BYOC) solution on Google Cloud, chip designers can now scale their Google Cloud infrastructure with Synopsys’s leading EDA tools under the flexible FlexEDA pay-per-use model and access unlimited EDA software license availability on-demand by the hour or minute.

Read more at Google Cloud Blog

Designing Billions of Circuits with Code

📅 Date:

🔖 Topics: Electronic Design Automation

🏭 Vertical: Semiconductor

🏢 Organizations: Cadence, Synopsys


Bringing EDA to silicon helped solve daunting challenges in chip making. A chip is built in layers. Now you have to wire connections in 3-D, taking into consideration layer-to-layer connections called vias.

Read more at Asianometry