Recurrent Neural Network (RNN)

Assembly Line

Long–short-term memory encoder–decoder with regularized hidden dynamics for fault detection in industrial processes

📅 Date:

✍️ Authors: Yingxiang Liu, Robert Young, Behnam Jafarpour

🔖 Topics: recurrent neural network, long short-term memory, machine health

🏢 Organizations: University of Southern California


The ability of recurrent neural networks (RNN) to model nonlinear dynamics of high dimensional process data has enabled data-driven RNN-based fault detection algorithms. Previous studies have focused on detecting faults by identifying the discrepancies in data distribution between the faulty and normal data, as reflected in prediction errors generated by RNN models. However, in industrial processes, variations in data distribution can also result from changes in normal control setpoints and compensatory control adjustments in response to disturbances, making it hard to differentiate between normal and faulty conditions. This paper proposes a fault detection method utilizing a long short-term memory (LSTM) encoder–decoder structure with regularized hidden dynamics and reversible instance normalization (RevIN) to compactly represent high-dimensional measurements for effective monitoring. During training, the hidden states of the model are regularized to form a low-dimensional latent space representation of the original multivariate time series data. As a result, the prediction errors of the latent states can be used to monitor the abnormal dynamic variations, while the reconstruction errors of the measured variables are used to monitor the abnormal static variations. Furthermore, the proposed indices can reflect operating conditions, even when the distribution of test data changes, which helps distinguish faults from normal adjustments and disturbances that controllers can settle. Data from numerical simulation and the Tennessee Eastman process are used to illustrate the effectiveness of the proposed fault detection method.

Read more at Journal of Process Control

Fast Recognition of Snap-Fit for Industrial Robot Using a Recurrent Neural Network

📅 Date:

🔖 Topics: Industrial Robot, Recurrent Neural Network

🏢 Organizations: Shandong University


Snap-fit recognition is an essential capability for industrial robots in manufacturing. The goal is to protect fragile parts by quickly detecting snap-fit signals in the assembly. In this letter, we propose a fast recognition method of snap-fit for industrial robots. A snap-fit dataset generation strategy of automatically acquiring labels is presented in the presence of data collection is complicated. A multilayer recurrent neural network (RNN) is designed for snap-fit recognition. An extensive evaluation based on two different datasets shows that the proposed method makes reliable and fast recognitions. Real-time experiments on industrial robot also demonstrate the effectiveness of the proposed method.

Read more at IEEE

MSWR-LRCN: A new deep learning approach to remaining useful life estimation of bearings

📅 Date:

✍️ Authors: Yongyi Chen, Dan Zhang, Wen-an Zhang

🔖 Topics: Bearing, Remaining Useful Life, Recurrent Neural Network, Predictive Maintenance, Machine Health

🏢 Organizations: Zhejiang University of Technology


Rolling bearings are important components of industrial rotating machinery and equipment. The prediction of the remaining useful life (RUL) of rolling bearings is of great significance for improving the safety of the machine, reducing the economic and property losses caused by the failure of the bearings. However, for the task of predicting the RUL of rolling bearings, the information of the past time and the future time are as important as the information of the current time. In order to make better use of the extracted features for RUL prediction of rolling bearings, this paper has proposed a novel deep learning framework of multi-scale long-term recurrent convolutional network with wide first layer kernels and residual shrinkage building unit (MSWR-LRCN). The major difference from the previous deep neural network is that our new network organically combines the attention mechanism with multi-scale feature fusion strategy, and improves the anti-noise ability of the entire network. In addition, moving average (MA) method and a polynomial fitting model are also used, which help predict the RUL of rolling bearings effectively. The results show that this method has improved the prediction accuracy compared with the existing methods.

Read more at Control Engineering Practice

Cooperation between Control Technology and AI Technology to Improve Plant Operation

📅 Date:

✍️ Author: Hiroshi Takahashi

🔖 Topics: Recurrent Neural Network, Multilayer Perceptron, LSTM, Industrial Control System

🏢 Organizations: Yokogawa


As the manufacturing industry is shifting its production model from mass production to the production of multiple products in small or variable quantities, more sophisticated operation of production equipment is required. Yokogawa has a unique approach to this problem, which was adopted by the New Energy and Industrial Technology Development Organization (NEDO). This paper describes details of this NEDO project and its achievements, as well as a study on the effective use of AI technology, which is another theme of this project.

In the NEDO project, to create this time-series model, we used effective nonlinear methods: multilayer perceptron (MLP), BiLSTM, and QRNN. As a result, we obtained correlation coefficients greater than 0.7 in the model. To verify whether this time-series model can reproduce the behavior of the target process, we evaluated its accuracy index. In addition, we used the model to solve the optimization problem and automatically calculate the optimal control parameters (PID values).

Read more at Yokogawa Technical Report