Intralogistics
Assembly Line
π§ π€ Optimising Intralogistics with AI
In its production facilities in Barntrup, KEB operates the in-house transport system AGILOX, which is designed specifically for intralogistics tasks. The AGILOX system is comprised of a swarm (union) of smart automated guided vehicles (AGVs), working collaboratively to transport items throughout KEBβs warehouses.
In AutoQML β a project that develops solution approaches for linking quantum computing and machine learning β KEBs primary objective is to devise a machine learning solution capable of monitoring vehicle status and predicting potential failures. This aligns with KEBs larger objective of facilitating the broader transition to quantum computing in the future, by supporting research institutes with practical, real-world applications.
Autonomous intralogistics from indoors to outdoors for a safe and seamless logistics chain
Computer-on-Modules For Autonomous Intralogistics Vehicles
At Transpharm Logistik, however, the promotional products change frequently and come in different shapes, sizes and weights. Staff therefore have to pick them individually per recipient. Nevertheless, Transpharm Supply Chain Analyst Martin Zwiebel was tasked to optimize the pick and delivery process further. βStaff were using heavy, bulky carts to pick promotional products,β recounts Zwiebel. Equipped with tablets and supported in some cases by pick-by-light systems, they gathered the individual items from across the entire warehouse and then wheeled the cart with the complete pick to the packing department, where the promotional products were made ready for dispatch. βWhen looking for a faster and easier solution, it became apparent that a driverless transport system promised significant advantages,β the analyst continued. So, what was needed was an affordable robotic trolley that could autonomously find its way to the next storage bay following a predefined optimized route, and that would prove a constant and helpful companion to staff.
AI in production logistics: mastering flexibility with KUKA AIVI
AGV and AMR: What is the Actual Difference?
In logistics centers and production halls, there are always a lot of pallets, crates, mesh boxes, racks and numerous other objects that must be transported. This task can be accomplished by forklifts with human operators behind the steering wheel. Increasingly, driverless transport systems (DTS) are being used to move goods autonomously from A to B.
These driverless transport vehicles include Automated Guided Vehicles (AGVs) and Autonomous Mobile Robots (AMRs). Although they both accomplish the same tasks, these abbreviations should not be used synonymously: the two vehicle types are different and each of them has specific characteristics.
The A in AGV stands for Automated, while the A in AMR stands for Autonomous: a small difference with major significance. As the name suggests, AMRs operate autonomously, for instance by evading obstacles that suddenly block their path. On the other hand, AGVs travel on fixed routes and can only accomplish pre-defined tasks by following automated instructions. In contrast, AMRs make their own decisions when a situation requires.