Fiber Reinforced Polymers

Assembly Line

SonoPrint: Acoustically Assisted Volumetric 3D Printing for Composites

๐Ÿ“… Date:

โœ๏ธ Authors: Prajwal Agrawal, Shengyang Zhuang, Simon Dreher, Sarthak Mitter, Daniel Ahmed

๐Ÿ”– Topics: Additive Manufacturing, Materials Science, Fiber Reinforced Polymers

๐Ÿข Organizations: ETH Zurich


Advancements in additive manufacturing in composites have transformed various fields in aerospace, medical devices, tissue engineering, and electronics, enabling fine-tuning material properties by reinforcing internal particles and adjusting their type, orientation, and volume fraction. This capability opens new possibilities for tailoring materials to specific applications and optimizing the performance of 3D-printed objects. Existing reinforcement strategies are restricted to pattern types, alignment areas, and particle characteristics. Alternatively, acoustics provide versatility by controlling particles independent of their size, geometry, and charge and can create intricate pattern formations. Despite the potential of acoustics in most 3D printing, limitation arises from the scattering of the acoustic field between the polymerized hard layers and the unpolymerized resin, leading to undesirable patterning formation. However, this challenge can be addressed by adopting a novel approach that involves simultaneous reinforcement and printing the entire structure. Here, we present SonoPrint, an acoustically-assisted volumetric 3D printer that produces mechanically tunable composite geometries by patterning reinforcement microparticles within the fabricated structure. SonoPrint creates a standing wave field that produces a targeted particle motif in the photosensitive resin while simultaneously printing the object in just a few minutes. We have also demonstrated various patterning configurations such as lines, radial lines, circles, rhombuses, quadrilaterals, and hexagons using microscopic particles such as glass, metal, and polystyrene particles. Furthermore, we fabricated diverse composites using different resins, achieving 87 microns feature size. We have shown that the printed structure with patterned microparticles increased their tensile and compression strength by โˆผ38% and โˆผ75%, respectively.

Read more at BioRxiv

Inferring material properties from FRP processes via sim-to-real learning

๐Ÿ“… Date:

โœ๏ธ Authors: Simon Stieber, Niklas Schrรถter, Ewald Fauster, Marcel Bender, Alexander Schiendorfer, Wolfgang Reif

๐Ÿ”– Topics: Materials Science, Fiber Reinforced Polymers, Transformer

๐Ÿข Organizations: University of Augsburg, University of Leoben, Technical University Ingolstadt


Fiber reinforced polymers (FRP) provide favorable properties such as weight-specific strength and stiffness that are central for certain industries, such as aerospace or automotive manufacturing. Liquid composite molding (LCM) is a family of often employed, inexpensive, out-of-autoclave manufacturing techniques. Among them, resin transfer molding (RTM), offers a high degree of automation. Herein, textile preforms are saturated by a fluid polymer matrix in a closed mold. Both impregnation quality and level of fiber volume content are of crucial importance for the final part quality. We propose to simultaneously learn three major textile properties (fiber volume content and permeability in X and Y direction) presented as a three-dimensional map based on a sequence of camera images acquired in flow experiments and compare CNNs, ConvLSTMs, and Transformers. Moreover, we show how simulation-to-real transfer learning can improve a digital twin in FRP manufacturing, compared to simulation-only models and models based on sparse real data. The overall best metrics are: IOU 0.5031 and Accuracy 95.929 %, obtained by pretrained transformer models.

Read more at The International Journal of Advanced Manufacturing Technology