Condition-Based Maintenance

Assembly Line

🪱🤖 GE Develops Worm-Inspired Robot For On-Wing Engine Inspections

📅 Date:

✍️ Author: Lindsay Bjerregaard

🔖 Topics: Condition-Based Maintenance, Nondestructive Test, Machine Health

🏭 Vertical: Aerospace

🏢 Organizations: GE Aerospace, SEMI Flex Tech, Binghamton University, UES


Resembling an inchworm, the Sensiworm (Soft ElectroNics Skin-Innervated Robotic Worm) uses untethered soft robotics technology to move easily through the nooks, crannies and curves of jet engine parts to detect defects and corrosion. The robot is also able to measure the thickness of an engine’s thermal barrier coatings.

Developed in partnership with SEMI Flex Tech, Binghamton University and UES, Inc., Sensiworm is controlled by an operator using a device that GE says is similar to a gaming controller and can be programmed to follow specific paths. “It has a sticky, suction-like bottom that enables it to climb and adhere to steep surfaces. Also, because the robot is very soft and compliant, it won’t harm any surfaces or cause any damage during an inspection,” says a spokesperson for GE.

According to GE, Sensiworm could reduce unnecessary engine removals and downtime, enabling faster turnarounds. Although Sensiworm is currently focused on engine inspections, Trivedi says the OEM is developing new capabilities that would enable the robot to execute repairs once it finds a defect.

Read more at Aviation Week

The Future of Oil and Gas Inspection Software

📅 Date:

🔖 Topics: Visual Inspection, Condition-based Maintenance

🏭 Vertical: Petroleum and Coal

🏢 Organizations: Optelos


The very nature of oil and gas operations makes assets susceptible to corrosion. Regular inspections help detect early signs of corrosion, thereby preventing potential leaks or failures. Modern technologies, such as drones and visual AI, have revolutionized this aspect, allowing for more detailed, quicker, and safer inspections.

Optelos stands out as a quintessential example of this type, merging the capabilities of the aforementioned software types into one cohesive solution. From managing visual data from UAVs to operationalizing visual AI for corrosion inspections and creating 3D digital twins, integrated platforms provide a holistic approach to oil and gas inspections.

Read more at Optelos Blog

🛣️ America’s Bridges, Factories and Highways Are in Dire Need of Repairs. Bring in the Robots.

📅 Date:

✍️ Author: Christopher Mims

🔖 Topics: Condition-Based Maintenance, Corrosion, Machine Vision

🏢 Organizations: Gecko Robotics, Shell, Skydio, VideoRay, Anybotics, Invert Robotics, Greensea


These days, Shell is able to keep the plant running, and keep repair personnel on the ground and at a safe distance as they operate wall-climbing robots that inspect things like steel holding tanks at millimeter resolution, says Steven Treviño, a robotics engineer at Shell. Using a variety of sensors, the robots can look for both corrosion and cracking. This helps the team shorten the list of things they have to take care of when a full shutdown occurs. The magnetic wall climbers Shell is using are made by a Pittsburgh-based startup called, appropriately, Gecko Robotics. After testing the Gecko robots at Geismar, Shell plans to expand their use to offshore facilities.

“There are hundreds of types of corrosion,” says Jake Loosararian, CEO of Gecko Robotics, “and we’ve been developing technology and software to analyze what kind of damage is happening.” Gecko began as a robotics company, but has since expanded into creating software to process the data its robots gather. The startup makes systems that are now used to track more than 60,000 assets across the globe, including power plants, pipelines, oil refineries, dams, U.S. Navy vessels and other military equipment.

When it comes to inspections, “often the data you need is literally in plain sight, it’s just hard to collect it,” says Bry, of Skydio.

Read more at Wall Street Journal