Silesian University of Technology

Assembly Line

A new intelligent fault diagnosis framework for rotating machinery based on deep transfer reinforcement learning

📅 Date:

✍️ Authors: Daoguang Yang, Hamid Reza Karimi, Marek Pawelczyk

🔖 Topics: Bearing, Reinforcement Learning, Machine Health, Convolutional Neural Network

🏢 Organizations: Politecnico di Milano, Silesian University of Technology


The advancement of artificial intelligence algorithms has gained growing interest in identifying the fault types in rotary machines, which is a high-efficiency but not a human-like module. Hence, in order to build a human-like fault identification module that could learn knowledge from the environment, in this paper, a deep reinforcement learning framework is proposed to provide an end-to-end training mode and a human-like learning process based on an improved Double Deep Q Network. In addition, to improve the convergence properties of the Deep Reinforcement Learning algorithm, the parameters of the former layers of the convolutional neural networks are transferred from a convolutional auto-encoder under an unsupervised learning process. The experiment results show that the proposed framework could efficiently extract the fault features from raw time-domain data and have higher accuracy than other deep learning models with balanced samples and better performance with imbalanced samples.

Read more at Control Engineering Practice