Hewlett Packard (HP)
Machinery : Additive Manufacturing : 3D Printer
Our vision is to create technology that makes life better for everyone, everywhere — every person, every organization, and every community around the globe. This motivates us — inspires us — to do what we do. To make what we make. To invent, and to reinvent. To engineer experiences that amaze. We won’t stop pushing ahead, because you won’t stop pushing ahead. You’re reinventing how you work. How you play. How you live. With our technology, you’ll reinvent your world.
Assembly Line
Enabling 3D Printing Automation with HP and Siemens
Sustainable Business Models for Manufacturing
John Deere Turns To 3D Printing More Efficient Engine Parts
The new thermal diverter valve on the latest versions of John Deere 6R and 6M tractors isn’t just an innovative application of increasingly accessible metal 3D printing technology, it’s the culmination of about two years of R&D. It started with a challenge to ensure John Deere tractors would perform in cold environments. Engineers were tasked with developing a valve that could maintain fuel temperatures without affecting engine performance.
Currently, more than 4,000 valves are being shipped from GKN to the John Deere tractor factory for final assembly at a price per part that is less than forging or milling. Tractors with this 3D-printed part are already in the field, literally. Müller says another benefit of 3D printing this particular part instead of using traditional methods, is added agility in the manufacturing process. Because 3D printing does not require molds or tools, part prototypes were faster and cheaper to create, which accelerated the design process. The design can be tweaked and improved at any time. Plus, when it comes to replacement parts, no standing inventory is necessary. The digital file of this value can be sent to any third-party manufacturer with HP Metal Jet technology and produced relatively locally and quickly.
AMFG Receives $8.5 Million in Funding Led by Intel Capital to Drive the Future of Fully Autonomous Manufacturing
AMFG Corp., a rapidly growing Manufacturing Execution System (MES) & workflow automation software for 3D printing, has secured $8.5M in funding led by Intel Capital to further catapult their spot in the new age of industrial transformation. As part of the most recent fundraise, Intel Capital investor Jennifer Ard is joining AMFG’s board of directors. With this new funding, AMFG will continue to help companies scale their additive manufacturing processes, further solidifying AMFG’s position at the forefront of the autonomous manufacturing revolution.
This financing round comes on the heels of a year of accomplishments for AMFG. These include expanding into the U.S by establishing a global headquarters in Austin, Texas, which places the company in direct contact with the region’s dramatically shifting manufacturing scene, and making strategic hires to the growing AMFG team. With this funding, AMFG will advance its vision to pioneer a path into the future of autonomous manufacturing.
Can Robots Fix Inflation, Supply Chain and Labor Issues? Singapore Thinks So
Breaking the Glass Ceiling of 3D Printing
Now having launched the S100, HP is anticipating a steady increase in the number of Metal Jet applications it has at scale. Pastor noted that it will take a process of ‘months and months’ to identify applications, assess the economics, carry out process development and then move forward. But he and HP are confident that, gradually, the technology will have a sizeable impact. “It’s not that this will be a ramp [with a steep ascent],” Pastor said. “And by the way, some of the 3D printing technologies, you have this step change [but] with a ceiling. Our approach is different. It actually will take time, but we will break this glass ceiling that 3D printing has right now.”
Metal Jet works by laying down a uniform, thin layer of metal powder across the build area before HP printheads jet binding agent at precise locations to define the geometry of parts. The liquid components of the binding agent then evaporate, with the process repeating until the build is complete. Once the build is complete, the powder bed is heated to complete the evaporation of liquid components of the binding agent and to cure the polymers to achieve high-strength green parts. Once cooled, the parts are removed from the powder bed via the depowdering process, with the green parts then moved into a furnace for sintering. When the sintering is concluded, the parts can undergo post-processing to meet dimensional and surface finish requirements.
Ocado showcases 3D printing innovation
Ocado has unveiled a new approach to building the robots in its fulfilment centres, which it hopes will dramatically improve efficiency and reduce operating costs. The company has developed a 600 Series bot, which it said can be built cheaper and is lighter than the current 500 Series bot. According to Steiner, the 600 Series grocery fulfilment bot “changes everything”. Ocado designed the 600 Series using topology optimisation, similar to the technique used in the aerospace sector to make aircraft parts strong but light. It then used additive manufacturing, in partnership with HP, to make 3D prints of the parts required to build the 600 Series.
Circular Economy 3D Printing: Opportunities to Improve Sustainability in AM
Within the 3D printing sector alone, there are various initiatives currently underway to develop closed-loop manufacturing processes that reuse and repurpose waste materials. Within the automotive sector, Groupe Renault is creating a facility entirely dedicated to sustainable automotive production through recycling and retrofitting vehicles using 3D printing, while Ford and HP have teamed up to recycle 3D printing waste into end-use automotive parts.
One notable project that is addressing circular economy 3D printing is BARBARA (Biopolymers with Advanced functionalities foR Building and Automotive parts processed through Additive Manufacturing), a Horizon 2020 project that brought together 11 partners from across Europe to produce bio-based materials from food waste suitable for 3D printing prototypes in the automotive and construction sectors.