3M

OEM : Chemical

Website | Video

Saint Paul, Minnesota, United States

NYSE: MMM

At 3M, we apply science in collaborative ways to improve lives daily. Ee have set an ambitious, long-term strategy for sustainability. Our intent is to use our passion and science-approach to tackle challenges where we can make the biggest impact. Challenges that are critical to the Sustainability of our planet, and the people living in it.

Assembly Line

The Long Dry Spell at One of America’s Most Innovative Companies

📅 Date:

✍️ Author: John Keilman

🏢 Organizations: 3M


John Banovetz, 3M’s chief technology officer, said the company’s reduction in product rollouts shows its push for quality over quantity. The company has focused its bets on potentially high-growth areas such as climate-saving technology and its fast-selling electric-vehicle components. “The R&D machine is alive and well,” he said.

Rob Kieschke, a former research director who left the company last year, said 3M’s weakening position in the smartphone display market is a symptom of its troubles. Researchers are encouraged to pursue incremental improvements to existing products rather than novel, swing-for-the fences breakthroughs. “If you start forcing people to eliminate risk, then all you end up doing is what has been done before or what everyone else is doing,” said Kieschke, who contributed to more than 20 patents.

Read more at Wall Street Journal

3M and Svante announce joint development agreement to develop and produce carbon dioxide removal products

📅 Date:

🔖 Topics: Partnership

🏢 Organizations: 3M, Svante


3M (NYSE: MMM) is expanding its ongoing commitment to materials science-based climate tech solutions by working with Svante Technologies, Inc. (Svante) to develop material that can trap carbon dioxide (CO2) found in the atmosphere and permanently remove it. 3M Ventures, the venture capital arm of 3M, recently participated in Svante’s Series E fundraising round, which raised $318 million to accelerate the manufacturing of Svante’s carbon capture and removal technology.

Read more at PR Newswire

👷 3M and Guardhat announce collaboration on connected safety

📅 Date:

🔖 Topics: Partnership

🏢 Organizations: 3M, Guardhat


Guardhat will bring 3M’s Safety Inspection Manager (SIM) into its Industrial Internet of People (IIoP) platform to accelerate product development.

This collaboration is expected to accelerate SIM enhancements while also evaluating new connected safety personal protection equipment (PPE) that aims to keep more frontline workers safe.

Read more at Guardhat News

Chevron invests in carbon capture and removal technology company, Svante

📅 Date:

🔖 Topics: Funding Event

🏢 Organizations: Chevron, Svante, 3M


Chevron New Energies (CNE), a division of Chevron U.S.A. Inc., and Svante announced that Chevron is the lead investor in Svante’s Series E fundraising round, which raised $318 million that will be used to accelerate the manufacturing of Svante’s carbon capture technology.

Since its founding in 2007, Svante has developed carbon capture and removal technology using structured adsorbent beds, known as filters. This funding will support Svante’s commercial-scale filter manufacturing facility in Vancouver, which is anticipated to produce enough filter modules to capture millions of tonnes of carbon dioxide (CO2) per year across hundreds of large-scale carbon capture and storage facilities.

Read more at Chevron Newsroom

Machine-Learning-Enhanced Simulation Could Reduce Energy Costs in Materials Production

📅 Date:

🔖 Topics: Sustainability, Machine Learning

🏢 Organizations: Argonne National Laboratory, 3M


Thanks to a new computational effort being pioneered by the U.S. Department of Energy’s (DOE) Argonne National Laboratory in conjunction with 3M and supported by the DOE’S High Performance Computing for Energy Innovation (HPC4EI) program, researchers are finding new ways to dramatically reduce the amount of energy required for melt blowing the materials needed in N95 masks and other applications.

Currently, the process used to create a nozzle to spin nonwoven materials produces a very high-quality product, but it is quite energy intensive. Approximately 300,000 tons of melt-blown materials are produced annually worldwide, requiring roughly 245 gigawatt-hours per year of energy, approximately the amount generated by a large solar farm. By using Argonne supercomputing resources to pair computational fluid dynamics simulations and machine-learning techniques, the Argonne and 3M collaboration sought to reduce energy consumption by 20% without compromising material quality.

Because the process of making a new nozzle is very expensive, the information gained from the machine-learning model can equip material manufacturers with a way to narrow down to a set of optimal designs. ​”Machine-learning-enhanced simulation is the best way of cheaply getting at the right combination of parameters like temperatures, material composition, and pressures for creating these materials at high quality with less energy,” Blaiszik said.

Read more at AZO Materials